
GPU accelerated computation of Polarized Subsurface BRDF
for Flat Particulate Layers

Charly Collin,1, ∗ Sumanta Pattanaik,1, † and Kadi Bouatouch2, ‡

1University of Central Florida, United States
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BRDF of most real world materials has two components, the surface BRDF due to the light reflecting at
the surface of the material and the subsurface BRDF due to the light entering and going through many
scattering events inside the material. Each of these events modifies light’s path, power, polarization state.
Computing polarized subsurface BRDF of a material requires simulating the light transport inside the material.
The transport of polarized light is modeled by the Vector Radiative Transfer Equation (VRTE), an integro-
differential equation. Computing solution to that equation is expensive. The Discrete Ordinate Method (DOM)
is a common approach to solving the VRTE. Such solvers are very time consuming for complex uses such as
BRDF computation, where one must solve VRTE for surface radiance distribution due to light incident from
every direction of the hemisphere above the surface. In this paper, we present a GPU based DOM solution of the
VRTE to expedite the subsurface BRDF computation. As in other DOM based solutions, our solution is based
on Fourier expansions of the phase function and the radiance function. This allows us to independently solve
the VRTE for each order of expansion. We take advantage of those repetitions and of the repetitions in each
of the sub-steps of the solution process. Our solver is implemented to run mainly on graphics hardware using
the OpenCL library and runs up to seven times faster than its CPU equivalent, allowing the computation of
subsurface BRDF in a matter of minutes. We compute and present the subsurface BRDF lobes due to powders
and paints of a few materials. We also show the rendering of objects with the computed BRDF. The solver is
available for public use through the authors’ web site.
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1. Introduction

The propagation of light in scattering and absorbing
media is modeled by the Radiative Transfer Equation
(RTE) [1]. One of the most common RTE solution meth-
ods is the Discrete Ordinate Method (DOM), which is
the method used in publicly available solvers, such as
DISORT [2].

To take into account polarization nature of the light,
the vector radiative transfer equation (VRTE), a variant
of the RTE, has been proposed. To support polarization,
the VRTE incorporates Stokes vector representation of
polarized light and Mueller matrix representation of po-
larized BRDF and phase function. As its scalar equiva-
lent (RTE), the VRTE is an integro-differential equation,
but rather than working with scalar values, the VRTE
is expressed in terms of Stokes vectors and Mueller ma-
trices [3]. The DOM solution can still be used for the
numerical solution of the VRTE [4], the difference be-
ing that the vector problem involves complex arithmetic.
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There are a number of references to such DOM based
solver in literature. ARTS [5] and VLIDORT [6] are two
well known public domain DOM based VRTE solvers.

Like many numerical solvers, a DOM VRTE solver is
computationally expensive. As we will notice in later
sections, in DOM based solution the order of compu-
tation increases polynomially with the number incident
directions. Consequently, for applications involving a
large number of incident and outgoing directions, serial
implementation of DOM solver can take long computa-
tion time (say hours).

In this paper, we describe a GPU based parallel BRDF
computation which relies heavily on a DOM solution for
VRTE for layered materials. Our solver running on a
off the shelf GPU, carries out the computation in much
faster (about seven times) than serial version, and hence
allows us to compute a BRDF in a few minutes.

An overview of the BRDF computation and light
transport solution is given in section 2. Section 3
presents a detailed cost analysis of the VRTE solution.
Section 4 describes our GPU solver and presents the
computation time as a function of various parameters,
follows it with the analysis of the results.

2. Solution

Our goal is to compute the subsurface component of the
BRDF Fr. This corresponds to the light entering the
material, getting scattered and exiting at the same or
at points very close to the point of light entry. This
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component satisfies the following equation:

Fr(µ′, φ′, µ, φ)E(µ′, φ′) = I(µ, φ), (1)

where µ is the cosine of the zenith angle and φ is the az-
imuthal angle of a direction. In this equation, E(µ′, φ′)
and I(µ, φ) are respectively the Stokes representation of
polarized incident irradiance and exiting radiance, and
Fr is the BRDF Mueller matrix. The components of
the Stokes vectors [I,Q, U, V ] are: I the total radiance,
Q the difference between the linearly polarized compo-
nents of radiance along the horizontal and vertical axis,
U the difference between the linearly polarized compo-
nents at 45 degrees and 135 degrees and V the difference
between the right circularly and left circularly polarized
components.

Computing Fr for a pair of incident and outgoing di-
rections (µ′, φ′, µ, φ) requires solving the VRTE inside
the material to compute the outgoing radiance I(µ, φ)
at the surface as a function of incident irradiance from
direction (µ′, φ′). In this section we briefly present
the VRTE and its DOM solution for layered homoge-
neous materials and a method for computing the BRDF
Mueller matrix from the VRTE solution.

2.A. VRTE
Polarized light transport in a plane-parallel participating
medium is modeled through the VRTE:

µ
∂

∂τ
I(τ, µ, φ) + I(τ, µ, φ) = J(τ, µ, φ), (2)

with τ the optical depth in the medium. I is the polar-
ized radiance and J is the source term, representing the
scattering contribution and is defined as:

J(τ, µ, φ) =
ω(τ)

4π

∫ 1

−1

∫ 2π

0

P(τ, µ, φ, µ′, φ′)I(τ, µ′, φ′)dφ′dµ′

+ Q(τ, µ, φ), (3)

where ω is the single scattering albedo of the medium,
P the phase matrix, and Q the inhomogeneous source
term which represents the direct contribution from the
light source and is defined as:

Q(τ, µ, φ) =
ω(τ)

4π
P(τ, µ, φ, µ0, φ0)I0 exp−

τ
µ0 , (4)

with (µ0, φ0) as the direction towards the light source
and I0 the radiance stokes vector incident from the light
source at the top layer.

For layered materials represented by the superposi-
tion of homogeneous layers, the phase function and sin-
gle scattering albedo are unique in each layer and do
not depend on τ anymore. If we further assume that the
layer is particulated and is composed of spherical parti-
cles or particles with random azimuthal orientation, then
the phase matrix becomes a function of the scattering
angle θ defined for a pair of incident direction (µ, φ) and
outgoing direction (µ′, φ′) as:

θ = µµ′ +
√

1− µ2
√

1− µ′2 cos(φ− φ′). (5)

2.B. Azimuthal separation
Because the phase matrix is a function of the scattering
angle, its Fourier decomposition can be written as [7]:

P(µ, φ, µ′, φ′) =

L−1∑
m=0

2∑
k=1

Φmk (φ′ − φ)Am(µ, µ′)Dk, (6)

Φm
1 (φ) = (2 − δ0,m)diag(cosmφ, cosmφ, sinmφ, sinmφ), (7)

Φm
2 (φ) = (2 − δ0,m)diag(− sinmφ,− sinmφ, cosmφ, cosmφ),

D1 = diag(1, 1, 0, 0), (8)

D2 = diag(0, 0, 1, 1),

where the Am’s are 4 × 4 matrices and are defined as
follows [8]:

Am(µ, µ′) =

L−1∑
l=m

Pm
l (µ)BlP

m
l (µ′). (9)

Here, Bl matrices contains the expansion coefficients
that define the scattering function and the Pm

l matri-
ces are the associated Legendre matrices satisfying [8]:

Pm
l (−µ) = (−1)l−mDPm

l (µ)D, (10)

D = diag(1, 1,−1,−1). (11)

Similarly, the Stokes vectors can be expanded as a
Fourier series:

I(τ, µ, φ) =
1

2

L−1∑
m=0

2∑
k=1

Φm
k (φ− φ0)Imk (τ, µ). (12)

Hence, the VRTE can be expanded as a set of equations:

µ
∂

∂τ
Imk (τ, µ) = −Imk (τ, µ)

+
ω

2

∫ 1

−1
Am(µ, µ′)Imk (τ, µ′)dµ′

+ Qm
k (τ, µ), (13)

where m ∈ {0, L− 1}, k ∈ {1, 2} and:

Qm
k (τ, µ) =

ω

4π
Am(µ, µ0)DkI0 exp

− τ
µ0 . (14)

Using DOM approach, the equation is converted into a
discrete set of equations by discretizing µ using a double
Gauss quadrature as follows [9]:

µ
∂

∂τ
Imk (τ, µi) = −Imk (τ, µi)

+
ω

2

N∑
n=−N

αnAm(µi, µn)Imk (τ, µn)

+ Qm
k (τ, µi), (15)

where N the quadrature size, αn are the quadrature
weights, and µi, µn are the quadrature nodes. In the rest
of this paper, we will assume quadrature nodes are al-
ways positive, and will differentiate upward from down-
ward directions by using µn and −µn respectively.
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2.C. Solution
To compute the exiting radiance field at any optical
depth τ , we must solve the equation 15 for all m and
k values. This equation is a first order differential equa-
tion and hence its solution can be written as the sum
of the homogeneous solution and a particular solution.
In the case of multiple layer materials, a solution has to
be computed for each layer. For simplicity, the homoge-
neous and particular solutions are presented here for a
single layer only. To simplify the equations furthermore,
we drop the scripts k and m in the following equations,
as the solution presented here is valid for all order of
expansion.

2.C.1. Homogeneous solution
The homogeneous solution is the solution to the VRTE
where the inhomogeneous source term Q is zero:

±µi
∂

∂τ
I(τ,±µi) = − I(τ,±µi) (16)

+
ω

2

N∑
n=1

αnA(±µi, µn)I(τ, µn)

+
ω

2

N∑
n=1

αnA(±µi,−µn)I(τ,−µn).

Such equations are known to have exponential solutions,
so I can be substituted in 16 as:

I(τ,±µi) = Φ(ν,±µi) exp−τ/ν . (17)

This leads to the following set of homogeneous equa-
tions:

−
±µi
ν

Φ(ν,±µi) =

N∑
n=1

(
ω

2
αnA(±µi, µn)− δi,n

)
Φ(ν, µn) (18)

+

N∑
n=1

(
ω

2
αnA(±µi,−µn)− δi,n

)
Φ(ν,−µn).

This set of equations can be written as a matrix opera-
tion using the following 4N vectors

Φ±(ν) = [ΦT (ν,±µ1),ΦT (ν,±µ2), · · · ,ΦT (ν,±µN )]T ,

as

M−1
(ω

2
WA− I8N

)[
Φ+(ν)
Φ−(ν)

]
= −1

ν

[
Φ+(ν)
Φ−(ν)

]
,(19)

where I8N is the identity matrix of size 8N , and

M= diag(µ1I4, · · · , µNI4,−µ1I4, · · · ,−µNI4), (20)

W= diag(α1I4, . . . , αNI4, α1I4, . . . , αNI4). (21)

A in the above equation is a 8N × 8N matrix defined as
follow:

A =

[
A1 A2

A3 A4

]
, (22)

where each subblock of the 4N × 4N Ai matrices are:

A1
i,j = A(µi, µj),A2

i,j = A(−µi, µj), A3
i,j = A(µi,−µj),

A4
i,j = A(−µi,−µj). (23)

The matrix form of the homogeneous equation 19 rep-
resents an eigenproblem, the solution to which yields
4N eigenvalues νj and eigenvectors Φ±j . The homoge-
neous solution is then expressed as a linear combination
of those solutions:

I
h
+(τ) =

4N∑
j=1

AjΦ
+
(νj) exp

−τ
νj +BjΦ

−
(νj) exp

−(τ0−τ)
νj , (24)

I
h
−(τ) = ∆

4N∑
j=1

AjΦ
−
(νj) exp

−τ
νj +BjΦ

+
(νj) exp

−(τ0−τ)
νj , (25)

where

Ih±(τ) = [IT (τ,±µ1), IT (τ,±µ2), · · · , IT (τ,±µN )], (26)

∆ = diag(D,D, · · · ,D), (27)

and where τ0 is the full thickness of the medium. The
computation of the unknowns Aj ’s and Bj ’s in Equa-
tions 24 and 25 will be discussed later.

2.C.2. Particular solution

A particular solution to VRTE equation 15 can be found
by looking for a solution I similar to the inhomogeneous
term (14). This latter has the form:

Q(τ, µ) = X(µ) exp
−τ
µ0 . (28)

So we look for a solution which can be expressed as:

Ip(τ, µ) = Z(µ) exp
−τ
µ0 . (29)

Substituting (29) in (15) yields the following set of par-
ticular equations:

−±µi
µ0

Z(±µi) = −Z(±µi)

+
ω

2

N∑
n=1

αnA(±µi, µn)Z(µn)

+
ω

2

N∑
n=1

αnA(±µi,−µn)Z(−µn)

+ X(±µi). (30)

Introducing the Z± and X± vectors:

Z± = [ZT (±µ1),ZT (±µ2), . . . ,ZT (±µN )]T , (31)

X± = [XT (±µ1),XT (±µ2), . . . ,XT (±µN )]T , (32)

This set of equation can be written as:(
− 1

µ0
M + I8N −

ω

2
WA

)[
Z+

Z−

]
=

[
X+

X−

]
. (33)

Once solved, equation 33 yields the Z± vectors and
the particular solution.
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2.C.3. Boundary conditions
Having both homogeneous and particular solutions, the
radiance field can be computed at any depth τ in the
layer as:

I(τ, µi) = Ih(τ, µi) + Ip(τ, µi). (34)

However the homogeneous solution still contains 8N un-
known Aj ’s and Bj ’s. These unknowns can be computed
from 8N equations with known I values. The boundary
condition of the layer gives us those known values.

• Light is incident at the top of the material layer
from a single direction, which has already been
accounted for as the inhomogeneous term. Thus
I(0, µ) = 0 when µ < 0.

• The radiance field at the bottom of the medium is
due to the reflection of incident radiance field at
the bottom boundary and is governed by R, the
base material BRDF:

I(τ0, µ) =

∫ 1

0

R(µ,−µ′)µ′I(τ0,−µ′)dµ′

+R(µ,−µ0)
µ0

2π
I0 exp−τ0/µ0 . (35)

The second term on the righthand side of the equa-
tion is due to the reflection of the attenuated inci-
dent radiance.
For a simplifying situation where there is no reflec-
tion from the base I(τ0, µ) = 0.

Each of those boundary conditions yields a set of 4N
linear equations. The unknowns A’s and B’s can be
computed by solving this linear system of 8N equations.
In the case of multiple layer materials, an homogeneous
solution is computed at each layer. Each extra layer adds
an extra 8N unknown combination factors. To compute
those we use the fact that the radiance field is continuous
between two layers, so at each layer boundary we have
a set of 8N linear equations.

2.C.4. Reconstruction
Equation 34 gives the solution only at the quadrature
angles. For arbitrary angles, the solution to the VRTE
needs to be reconstructed. This is achieved by following
the Source Function Integration technique [1][10] which
yields for any positive µ value:

I(τ, µ) = I(τ0, µ) exp−(τ0−τ)/µ

+

∫ τ0

τ

S(t, µ) exp−(t−τ)/µ dt, (36)

I(τ,−µ) =

∫ 0

τ

S(t,−µ) exp−(t−τ)/µ dt, (37)

where:

S(τ, µ) =
ω

2

N∑
i=−N

αnA(µ, µi)I(τ, µi)

+ Q(τ, µ). (38)

The integral terms in equations 36, 37 have a close form
solution as all the terms are exponential functions of τ .

2.D. BRDF Computation
We wish to compute the BRDF Mueller matrix as de-
fined in equation 1. For a given pair of directions (µ, µ0),
solving equation 15 results in a single Stokes Vector. To
compute the 16 unknowns of the BRDF Mueller matrix,
we need solutions to several incident irradiance Stokes
vectors Einc :

Fr(µ, µ′, φ− φ′) = [I1(0, µ′, φ′), . . . , In(0, µ′, φ′)]

× [E1
inc(µ, φ), . . . ,En

inc(µ, φ)]−1,(39)

where n is at least 4 when the incident Stokes vectors
are linearly independent.

3. Computation cost
In this section we analyze the computation cost associ-
ated with each step of the VRTE solution, and identify
the possible GPU parallelization steps.

3.A. Homogeneous solution
The homogeneous solution is the first step of the VRTE
solution. As it is independent of the incident radiance, it
needs to be computed only once per order of expansion.
Homogeneous solution involves solving an eigenproblem.
As can be seem from equation 19, the problem has a size
of 8N × 8N . Because of the symmetry of the problem,
the eigenproblem size is reduced by half by introducing
the following vectors and matrices [4]:

X = M(Φ+ + Φ−),

Y = M(Φ+ −Φ−), (40)

E =

(
I4N −

ω

2

L∑
l=m

ΠlBl

[
I4N + (−1)l−mD

]
Π
T
l W

)
M

−1
,

F =

(
I4N −

ω

2

L∑
l=m

ΠlBl

[
I4N − (−1)l−mD

]
Π
T
l W

)
M

−1
, (41)

where:

Π = [Pm
l (µ1),Pm

l (µ2), · · · ,Pm
l (µN )]

T
(42)

Using the vectors and matrices introduced above gives
us the following two eigenproblems:

(FE)X = λX , (43)

(EF)Y = λY. (44)

Solution of either of these problems gives us the required
eigenvectors and eigenvalues. For example, solving equa-
tion 43 we can retrieve the solution to equation 19 as:

ν2j = 1/λj ,

Φ±(νj) =
1

2
M−1(I4N ± νjE)X (λj). (45)

While reducing the size of the eigen solution implies
an extra eigen solution reconstruction step, it is overall
less expensive to do so.

Thus the homogeneous solution is carried out in 3
steps:
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• First the E and F matrices are computed. Each
matrix is computed one 4× 4 subblock at a time,
each requiring 3 matrix multiplications. This step
involves N ×N ×L independent subblock compu-
tations that can be computed in parallel.

• The second step is to solve L eigenproblems, one
for each order of expansion. This step also requires
that the matrix FE is set up before carrying out
the solution. So this step requires L matrix mul-
tiplications to compute the FE matrices, where
dimension of each matrix is 4N × 4N . The matrix
computation can be done in L× 4N × 4N parallel
computation 4N sum of elements.

• The final step is to compute the eigenvectors Φ±

from the half-problem solution. This step involves
L× 4N × 4N sums of 4N elements, that also can
be computed in parallel.

3.B. Particular solution

The particular solution requires solving 8N equations for
8N unknowns. This solution requires solving a linear
system of 8N equations. Using a strategy similar to
that done is homogeneous solution, the problem size is
reduced [4] to solving 4N equations for 4N unknowns as
follows. This is done by introducing the following vector:

G = Z+ + Z−, (46)

and solving a system of 4N linear equations:(
FE− 1

µ2
0

)
G =

(
FX+ +

1

µ0
X−
)

M−1. (47)

Once solved, the Z± vectors as used in (31) can be re-
trieved as:

Z± =
1

2
M−1

[
I4N ±

1

µ0
E

]
G. (48)

Here are the steps for computing the particular solu-
tion:

• Creation of the problem matrix (equation 47): It
involves, for each order of expansion, two 4N×4N
matrix-vector multiplications, and thus a total of
2L such multiplications. This step can be executed
as L× 4N parallel computations, each involving a
4N sum and two scalar multiplications.

• Computing the G vectors: It requires a total of L
4N × 4N matrix inversions and multiplications.

• Finally, retrieving the Z± vectors: It costs a to-
tal of L multiplications of 4N × 4N matrices (to
compute EG), as well as 2L sums of 4N vectors
to retrieve Z+ and Z−.

3.C. Boundary conditions
The boundary conditions are used to find the 8N un-
knowns A’s and B’s for equation 24. In the simple case
of zero reflection from the bottom, the boundary condi-
tion leads to the following two sets of equations:

IhT− (0) + IpT− (0) = 04N , (49)

IhT+ (τ0) + IpT+ (τ0) = 04N , (50)

where 04N is a vertical zero vector of size 4N . Introduc-
ing the following vector of unknown constants:

CT = [A1, A2, · · · , A4N , B1, B2, · · · , B4N ], (51)

we can write any homogeneous solution as:

Ih(τ,±µi) = KT (τ,±µi)C, (52)

with:

K(τ,±µi) =



ΦT (ν1,±µi) exp
−τ
ν1

...

ΦT (ν4N ,±µi) exp
−τ
ν4N

ΦT (ν1,∓µi) exp
−(τ0−τ)

ν1

...

ΦT (ν4N ,∓µi) exp
−(τ0−τ)
ν4N


. (53)

Therefore the boundary problem can be expressed using
the following matrix notation:[

KT
+(0)

KT
−(τ0)

]
C = −

[
Ip−(0)
Ip+(τ0)

]
, (54)

where

K+(τ) = [K(τ,−µ1), · · · ,K(τ,−µN )], (55)

K−(τ) = [K(τ, µ1), · · · ,K(τ, µN )]. (56)

Thus in the simple case of no reflection from the bot-
tom boundary, the solution can be split into the follow-
ing two steps:

• The creation of the left hand side matrix (equation
54) involves, for each order of expansion, 8N ×8N
scalar operations.

• Computing the C vectors requires a total of L ma-
trix inversions.

3.C.1. Base Reflection
For solution with nonzero base boundary reflection the
righthand side of the equation 50 is nonzero and hence
we have to take into that computation into account. We
rewrite equation 50 as

IhT+ (τ0) + IpT+ (τ0) = Lrefl. (57)

Lrefl is derived by discretizing the integral part of the
righthand side of equation 35 for every quadrature angle
µi as:

Lrefl(µi) =

N∑
j=1

αjR(µi,−µj)µjI(τ0,−µj) + Lsrefl(µi),
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where R is the 4 × 4 Mueller BRDF matrix, and Lsrefl
represents the reflection of the attenuated source term
in equation 35, i.e.

Lsrefl(µi) = R(µi,−µ0)
µ0

2π
I0 exp−τ0/µ0 . (58)

Using equation 52 we rewrite the reflection equation as:

Lrefl(µi) = Lhrefl(µi)C + Lprefl(µi) + Lsrefl(µi),(59)

where

Lhrefl(µi) =

N∑
j=1

αjR(µi,−µj)µjKT (τ0,−µj), (60)

Lprefl(µi) =

N∑
j=1

αjR(µi,−µj)µjIp(τ0,−µj). (61)

Introducing the vectors:

LHrefl =
[
LhTrefl(µ1), · · · ,LhTrefl(µN )

]T
, (62)

LPrefl =
[
LpTrefl(µ1), · · · ,LpTrefl(µN )

]T
, (63)

LSrefl =
[
LsTrefl(µ1), · · · ,LsTrefl(µN )

]T
, (64)

we now write the boundary problem in the case of non-
zero base reflection as:

 KT+(0)

KT−(τ0)

 −
[

04N
LHrefl

]C =

[
04N

LPrefl + LSrefl

]
−
[

I
p
−(0)

I
p
+

(τ0)

]
. (65)

Thus base reflection adds an extra computation step
to the boundary problem where the downward radiance
field needs to be integrated at the bottom of the layer,
and then used to update the boundary condition. The
computation of equations 60 and 61 for every µ require
summation involving 4N terms. However, equation 60 is
evaluated 4N times for each order, so a total of L× 4N
summations, whereas the equation 61 is evaluated only
once. So in total this step can be computed as L×4N +
1 parallel summation evaluations. The base reflection
also evaluates equation 58, 4N times. However, this
evaluation is a simple and hence is not included in this
discussion.

In the context of base reflection, the particular case
of ideal depolarizing Lambertian base needs a special
mention, because it reduces to computation cost to some
extent. For such a reflection only the top-left element of
Mueller BRDF matrix R is non-zero, i.e.

R00(µi,−µj) = 2ρ, (66)

where ρ is the Lambertian albedo.
Furthermore, because of the directional independence

of Lambertian reflectors Lhrefl, Lprefl and Lsrefl in equa-
tions 60, 61, and 58 are independent of µi, hence are
computed only once, and are duplicated to set up the
corresponding vectors. Thus the computation cost is re-
duced by a factor of N.

3.D. Reconstruction

The reconstruction of the radiance field at any τ value
requires the evaluation of equations 36 and 37 for any ar-
bitrary ±µ value where µ ∈ {0, 1}, and for any azimuth
angles φ. However, for BRDF computation the radiance
field computation is limited only to τ = 0 and to +µ
values. However, this computation must be carried out
for all incident µ0 values. Independent of whether it is
done for radiance field or for BRDF, the reconstruction
step consists of the following four steps.

• Computing I(τ0, µ): It is the radiance at the base
of the layer (the first item on the right of equation
36). The cost of this step depends on the cost of
the bottom boundary condition. In the simplest
case where no light is reflected at the bottom of
the boundary, that step has no cost as I(τ0, µ).
Otherwise, for every µ the the cost is a sum of
4N × 4N terms involving homogeneous solution
and a sum of 4N terms involving particular solu-
tion. For Lambertian base, this cost remains the
same. However, the term is independent of µ, so
needs to be computed only once.

• Computing I for equation 38: We analyze the cost
in the following three substeps. Each of these sub-
steps require N2 matrices A(µ, µ′) each of size
4 × 4, which must be obtained through a sum of
up to L elements (see equation 9) each involving
two 4× 4 matrix multiplications.

– Computing Ih component of I: It requires
L × 8N sums of 2N elements, each element
of which is obtained through a 4 × 4 matrix
(A(µ, µ′)) and 4 elements vectors (Φ(ν, µ))
multiplication.

– Computing Ip component of I: This step re-
quires L sums of 2N elements, each element
of which is obtained through a 4 × 4 matrix
(A(µ, µ′)) and 4 elements vectors (Z(µ)) mul-
tiplication.

– Computing Q term for equation 38 : It is the
last term of equation 38. That terms needs
to be evaluated at each order of expansion,
and for every incident direction in the de-
sired BRDF. For each of these direction, this
step can be executed as a single 4× 4 matrix
(A(µ, µ0)) and 4 elements vectors (I0) mul-
tiplication. Note that this substep requires
A(µ, µ0) which is different from A(µ, µ′) and
hence must be computed independently from
the other two substeps.

This reconstruction is done for every order of expan-
sion, resulting in all the Im(τ, µ). A final reconstruction
step is needed to get the radiance at any azimuthal angle
φ using the sum from equation 12.
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4. Implementation, Results and Discussion
We implemented our VRTE solver in C++. For all the
parallelizable steps of the solver (that were identified in
section 3) we created sequential and parallel versions.
The parallel version is written in OpenCL (a parallel
computing language for multi core and many core de-
vices) [11]. We chose between the sequential and parallel
version through compiler directives. Instead of writing
our own code for Eigen solution (used for Homogeneous
solution) and matrix inversion (used for Particular so-
lution and Boundary condition based solution), we used
function calls from one of the two well established Linear
Algebra C++ libraries: EIGEN [12], a library that relies
on sequential computation, and MAGMA [13], a GPU
accelerated library. Even though EIGEN is designed for
sequential computation, it has an optional vectorization
feature that could be enabled to take advantage of the
vector instruction set of the CPU. Taking combinations
of sequential and parallel implementation, EIGEN libray
(vectorized and nonvectorized) and MAGMA library, we
created six different configurations for our solver. These
configurations are identified in Table 1. In the rest of this
section we compare the computation times from these
configurations, show the lobes of some of the computed
BRDFs, and show some rendered images of a simple
scene with objects having the computed BRDFs as their
surface reflection properties. The phase functions used
in this section (except for the benchmark test) are all
computed using a publicly available Mie theory based
code by Mischenko [18]. All the results shown in this
section were obtained using a laptop with a Intel Core
i7 as CPU and a Nvidia GTX 580 as GPU.

EIGEN

without

vectorization

EIGEN

with

vectorization

MAGMA

Sequential solution Conf. 1 Conf. 2 Conf. 3

Parallel solution Conf. 4 Con.n 5 Conf. 6

Table 1. Various configurations of our VRTE solver.

4.A. Validation
To validate our implementation, we ran the Wauben and
Hovenier benchmark test [14] on all the configurations
of our solver. The benchmark uses 30 quadrature angles
and 12 orders of expansion for the phase function.

The results from all the solver configurations are in
perfect agreement with the benchmark results. Table 2
shows the computation time for running the benchmark
on each of the solver configurations. The table shows
a reasonably good improvement (≈ 3 times) between
the parallel solver and the sequential solver. Among the
configurations, we noticed only minor improvements for
using vectorized EIGEN library as compared to using
its nonvectorized counterpart. The results from using
MAGMA library showed a little discouraging slow down
as compared to the computation time from using EIGEN

library. We investigate this problem later in the follow-
ing paragraphs.

EIGEN

without

vectorization

EIGEN

with

vectorization

MAGMA

Sequential solution 2.79 2.74 2.94

Parallel solution 0.99 0.97 1.18

Table 2. Time (in seconds) required to compute the bench-
mark problem using each of the six configurations.

4.B. Radiance field due to a directional incidence

We ran our solver to compute radiance field due to a
directional (µ0 = 0.6) monochromatic (λ = 400nm)
light incident on homogeneous particle layers of thick-
ness 100 (τ0 = 100) composed of spherical particles (ra-
dius 0.6µm) from several materials. We used 40 quadra-
ture nodes (N = 40) for the computation. The radiance
field was computed for 11 zenith and 19 azimuth angles.

Fig. 1. Detailed cost of computing a radiance field with the
different configurations.

Table 4 shows the total computation time and time
spent for each major step of the computation on each
of the six configurations for one of the materials (a lay-
ered suspension of gold particles). All other materials
showed similar trends. Figure 1 shows the same infor-
mation in a stacked bar chart. We summarize below our
observations from the table:

• Total computation cost: All the solver configura-
tions that included parallelization ran faster than
their sequential counter part. We find a speed-up
of more than 3 between the fastest ones among the
sequential and parallel configurations.

• Cost of individual computation steps: The com-
putation times for the individual steps do not all
show an obvious trend. Independent of the solver
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configuration, we find that a lion’s share of compu-
tation time is taken up by the reconstruction step.
And this step is also the step that takes the max-
imum advantage (hence most speedup) from par-
allelization. If we ignore the configuration using
MAGMA (discussed later), the remaining three
steps of the computation (homogeneous, particu-
lar and boundary solution) do not show any sig-
nificant speed difference. We justify this finding
by pointing to the fact that independent of the
configurations, the most expensive matrix compu-
tations (eigen solution and matrix inversion) for
these steps are done sequentially for each order of
expansion using calls to EIGEN library. The par-
ticular speed advantage associated with the com-
putation of the matrices in parallel was mostly
counter balanced by the time taken to transfer the
data to and from the GPU device and in preparing
the parameters for EIGEN function calls from the
retrieved data. Thus the reconstruction step fully
influenced the total speed up in computation time.

• Vectorized vs. nonvectorized EIGEN library: The
vectorized EIGEN library consistently showed a
slight improvement in computation time over the
nonvectorized counterpart. Thus it was unneces-
sary to continue experimenting with the configura-
tions that used nonvectorized EIGEN library. So
we drop them from all the subsequent tables and
plots.

• EIGEN library vs. MAGMA library: We observed
in our benchmark validation step that the tim-
ing results from configurations using MAGMA li-
brary has a minor slow down. We notice the same
trend here as well. We had expected that the GPU
based MAGMA library would improve our compu-
tation time for eigen solution (homogeneous solu-
tion step) and for matrix inversion (particular solu-
tion and boundary handling step). We later found
from studies conducted by independent researches
[15] that though the GPU based matrix libraries
(such as MAGMA) are supposed to accelerate the
computation, for complex matrix related problems
(such as eigen solution) initial setup times are high
and noticeable speedup is only achieved for ma-
trix sizes many time larger than those used in our
VRTE solver.

So we discontinued the configurations using
MAGMA library.

Based on the above observations we continued our ex-
periment using only two remaining configurations: Se-
quential implementation using vectorized EIGEN library
(Configuration 2), and Parallel implementation using
vectorized EIGEN library (Configuration 5).

We then went on to study the computation time trend
of our configurations as a function of the various param-
eters of the solver: number of quadrature nodes, orders

of expansion, number of outgoing directions for recon-
struction. We carried out these experiments to further
validate and to verify the scalability of our implementa-
tion. For each of the cases we measured total time and
time spent by the individual steps.

Configuration: 1 2 3 4 5 6

Homogeneous: 6.50 6.11 9.18 6.07 5.75 8.43

Particular: 0.04 0.04 0.07 0.04 0.04 0.07

Boundary problem: 0.24 0.24 0.25 0.24 0.24 0.25

Reconstruction: 22.1 22.0 22.1 2.52 2.51 2.53

Total: 28.9 28.4 31.5 8.88 8.56 11.18

Table 3. Time (in seconds) to solve each step of the compu-
tation of the radiance field with the different configurations.

4.B.1. Influence of the quadrature size
The quadrature size improves the accuracy of the DOM
computation. However, they also increase the computa-
tion time. In fact, according to the analysis carried out
in the previous section, the computation speed should
decrease quadratically or cubically (depending on the
computation) with the increase in the quadrature size
N . Figure 2 plots total computation time as a function
of quadrature size and figure 3 plots the breakup of the
computation time for execution of each step. The curves
are consistently in agreement with our expectation. As
discussed earlier, except for the reconstruction step, the
computation times for the remaining steps were almost
the same for the sequential and the parallel configura-
tion. The reconstruction step of the parallel implemen-
tation (configuration 5) did not seem to be affected by
the increase in in quadrature size. This could be because
the problem size used in the experiments were still not
enough to make a full utilization of GPU computation
units. Overall, because of the accelerated reconstruction
step, the speed of the sequential implementation (con-
figuration 2) lagged behind in parallel implementation
(configuration 5) by more than a constant factor.

4.B.2. Influence of the number of direction of the
radiance field
The only step affected by the number of outgoing di-
rections (µ) of the radiance field is the reconstruction
step, and the cost analysis shows a linear relationship
between this number and the reconstruction cost. The
plots in figures 4 and 5 agree with our analysis. The
computation time of all the steps except the reconstruc-
tion step were independent of the number of outgoing
directions. As observed earlier the reconstruction step
benefited the most from the reconstruction, and hence
did the total computation time.

4.B.3. Influence of the order of expansion
The order L of the Fourier expansion of the phase func-
tion linearly affects the number of times the computation
steps are executed. So the computation time is expected
to vary linearly with L. Figures 6 and 7 plot the total
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Fig. 2. Cost of the solution as a function of the quadrature
size.

(a)Homogeneous (b)Particular

(c)Boundaries (d)Reconstruction

Fig. 3. Cost of each solution step for different quadrature
sizes.

computation time and computation times of the indi-
vidual steps respectively, as a function of the order of
expansion[19]. The plots show linear relation between
the order of expansion and the total computation time.
However, as in earlier observations, the parallel config-
uration did not perform any better for the computation
of the homogeneous, particular and boundary steps as
compared to the sequential configuration.

4.C. BRDF computation
Finally we show the computation times for BRDF com-
putation. For the BRDF computation VRTE is solved
for a number of incident directions. Note that polar-
ized BRDF is a Mueller matrix, so we need a minimum
of four incident Stokes vectors for every direction. All
the parameters affecting the radiance field computation
equally affect the BRDF computation. We repeated the
experiment with the same set up as in section 4.B and
measured the computation time as a function of the

Fig. 4. Solution cost as a function of the number of outgoing
directions.

(a)Homogeneous (b)Particular

(c)Boundaries (d)Reconstruction

Fig. 5. Cost of each solution step for different numbers of
outgoing directions.

number of incident directions. Since all the steps ex-
cept the step involving homogeneous solution had to be
repeated for each incident directions and each incident
Stokes vector, we expected the cost to increase linearly
for those steps with the increase in the number of inci-
dent directions. Figures 8 and 9 plot the computation
time as a function of the number of incident directions.
The curves very much agree with the expectation: the
computation time of the homogeneous solution step re-
mained unchanged and all the other times showed linear
trend.

4.D. Renderings

We used our solver to compute the BRDF for mate-
rial layers composed of several particle types. Figure 10
shows for each material two computed BRDF lobes: one
for an oblique incidence (µ0 = 0.6) and the other for
normal incidence, and a rendered image of a scene com-
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Fig. 6. Solution cost as a function of the expansion size.

(a)Homogeneous (b)Particular

(c)Boundaries (d)Reconstruction

Fig. 7. Cost of each solution step for different expansion
sizes.

posed of spherical objects with the computed BRDF as
their surface properties. The scene was illuminated with
synthetic skylight. Each row of the figure corresponds
to a different material.

The current version of our parallel solver (configura-
tion 5) computes a polarized subsurface BRDF in 1̃5
minutes, where as the sequential solver (configuration
2) takes close to two hours for this computation.

We have made the solver used in this section avail-
able [16] for public use. The solver takes the material
specification as input, and based on the user’s choice
computes the polarized radiance field at any layer thick-
ness (τ value) or computes the polarized BRDF. The
output is made available to the user in a tabular form
for download. The page also provides a renderer to visu-
alize the computed radiance field or the BRDF lobe. In
the latter case, the renderer allows interactive viewing
of the computed lobe as a function of incident direction.
The rendered sphere images used in this section were

Fig. 8. Solution cost as a function of the number of incident
directions.

(a)Homogeneous (b)Particular

(c)Boundaries (d)Reconstruction

Fig. 9. Cost of each solution step for different numbers of
incident directions.

obtained using a polarized path tracer. We have also
made this path tracer available for public use [17].

5. Conclusion

In this paper we proposed parallelization of DOM based
VRTE solvers for computing polarized light transport
inside homogenous layered materials for computing po-
larized radiance field and for computing polarized sub-
surface BRDF. We analyzed the cost of each step of the
solution, identified potential parallelization steps, and
implemented those steps in OpenCL to run them in par-
allel in GPU. The major bottleneck was found to be in
solving eigen problem and in computing matrix inver-
sion. Though we attempted to use GPU based library
for these computations, for our problem size we found
only minor speedup for matrix inversion computation
and minor setback for eigen solution computation. The
parallelization gave us significant speedup in the final
reconstruction step that dominated the cost of radiance
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field computation and more so in BRDF computation us-
ing the solver. So the overall computation speed-up for
our parallel solver was found to be significant as com-
pared to its sequential counterpart. Our parallel soft-
ware configuration (that uses a sequential linear algebra
library for eigen problem and linear system solution) is
about seven times faster than the sequential configura-
tion for BRDF computation with a reasonable number
of incident and outgoing directions.

Though our parallel solver allows us to compute
BRDF faster, we believe that we will be able to fur-
ther improve its speed. We are still using an external
Linear Algebra library and computing the expensive ma-
trix problems (eigen solution and matrix inversion) se-
quentially, and furthermore solving them sequentially for
each order of expansion. In future we plan to write our
parallelized eigen solver and linear system solver that
will allow us to compute eigen solution and matrix in-
version for all the expansion orders in one function call
each. This will result in an increase in problem size
for better utilization of GPU resources, and will help us
bring down the computation time further.
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(a)Au - Particle size: 0.6µm

(b)Ag - Particle size: 0.3µm

(c)AlGaAs - Particle size: 0.3µm (Lobe scale factor = 0.5)

(d)AlCu - Particle size: 0.3µm

(e)ZnSCuB - Particle size: 0.8µm (Lobe scale factor = 0.5)

(f)PbS - Particle size: 0.3µm (Lobe scale factor = 2.0)

(g)Cu - Particle size: 0.6µm

(h)T iO2 - Particle size: 0.6µm (Lobe scale factor = 0.5)

Fig. 10. BRDF lobes and renderings for various materials and particle size. Lobes are shown for a wavelength λ = 640nm.
Left column corresponds to an incident direction µi = 0.6, middle column to a normal incident direction (µi = 1.0). Right
column shows a rendering using 9 wavelengths. Some of the lobes have been scaled to a reasonable size. For those lobes, the
scale factor is given below the lobes.


